How does the skeletal system interact with the nervous system

The human body contains trillions of cells, 78 different organs and more than 60,000 miles of blood vessels if you stretched them end-to-end. Incredibly, all of these cells, vessels and organs work together to keep you alive.

Each organ belongs to one of ten human body systems. These body systems are interconnected and dependent upon one another to function. Your heart does not beat unless your brain and nervous system tell it to do so. Your skeletal system relies on the nutrients it gains from your digestive system to build strong, healthy bones.

How does the skeletal system interact with the nervous system

There are 10 body systems:

  1. Circulatory
  2. Respiratory
  3. Nervous
  4. Muscular
  5. Skeletal
  6. Digestive
  7. Endocrine (hormones)
  8. Lymphatic, or immune system
  9. Reproductive
  10. Integumentary (skin, hair)

A body system is a group of parts that work together to serve a common purpose. Your cardiovascular system works to circulate your blood while your respiratory system introduces oxygen into your body.

Each Body System Works with the Others

Each individual body system works in conjunction with other body systems. The circulatory system is a good example of how body systems interact with each other. Your heart pumps blood through a complex network of blood vessels. When your blood circulates through your digestive system, for example, it picks up nutrients your body absorbed from your last meal. Your blood also carries oxygen inhaled by the lungs. Your circulatory system delivers oxygen and nutrients to the other cells of your body then picks up any waste products created by these cells, including carbon dioxide, and delivers these waste products to the kidneys and lungs for disposal. Meanwhile, the circulatory system carries hormones from the endocrine system, and the immune system’s white blood cells that fight off infection.

Each of your body systems relies on the others to work well. Your respiratory system relies on your circulatory system to deliver the oxygen it gathers, while the muscles of your heart cannot function without the oxygen they receive from your lungs. The bones of your skull and spine protect your brain and spinal cord, but your brain regulates the position of your bones by controlling your muscles. The circulatory system provides your brain with a constant supply of oxygen-rich blood while your brain regulates your heart rate and blood pressure.

Even seemingly unrelated body systems are connected. Your skeletal system relies on your urinary system to remove waste produced by bone cells; in return, the bones of your skeleton create structure that protects your bladder and other urinary system organs. Your circulatory system delivers oxygen-rich blood to your bones. Meanwhile, your bones are busy making new blood cells.

Working together, these systems maintain internal stability and balance, otherwise known as homeostasis. Disease in one body system can disrupt homeostasis and cause trouble in other body systems. If you become ill with the AIDS virus that affects your immune system, for example, you may develop pneumonia in your respiratory system, a yeast infection in your reproductive system, Candida that affects your esophagus in your digestive system or the skin cancer known as Kaposi’s sarcoma.

For more information on the connection between body systems, talk to your health professional at Revere Health. We offer family practice and 39 medical specialties to help all ten of your body systems work together. 

Sources:
Organs of the Body
Cleveland Clinic
AIDS.org

1. Acevedo AR, Nava C, Arriada N, Violante A, Corona T. Cardiovascular dysfunction in multiple sclerosis. Acta Neurol Scand 101: 85–88, 2000. doi: 10.1034/j.1600-0404.2000.101002085.x. [PubMed] [CrossRef] [Google Scholar]

2. Agostoni E, Chinnock JE, De Daly MB, Murray JG. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135: 182–205, 1957. doi: 10.1113/jphysiol.1957.sp005703. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch Intern Med 169: 938–944, 2009. doi: 10.1001/archinternmed.2009.66. [PubMed] [CrossRef] [Google Scholar]

4. Aharon-Peretz J, Harel T, Revach M, Ben-Haim SA. Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer’s disease. Arch Neurol 49: 919–922, 1992. doi: 10.1001/archneur.1992.00530330041013. [PubMed] [CrossRef] [Google Scholar]

5. Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M. Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater, and spinal ligaments of the rat lumbar spine. Spine 18: 268–273, 1993. doi: 10.1097/00007632-199302000-00016. [PubMed] [CrossRef] [Google Scholar]

6. Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI. Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 482: 96–103, 2009. doi: 10.1016/j.abb.2008.11.012. [PubMed] [CrossRef] [Google Scholar]

7. Allison SJ, Baldock P, Sainsbury A, Enriquez R, Lee NJ, Lin EJ, Klugmann M, During M, Eisman JA, Li M, Pan LC, Herzog H, Gardiner EM. Conditional deletion of hypothalamic Y2 receptors reverts gonadectomy-induced bone loss in adult mice. J Biol Chem 281: 23436–23444, 2006. doi: 10.1074/jbc.M604839200. [PubMed] [CrossRef] [Google Scholar]

8. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L. Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol 56: 154–161, 1999. doi: 10.1124/mol.56.1.154. [PubMed] [CrossRef] [Google Scholar]

9. Arai M, Nagasawa T, Koshihara Y, Yamamoto S, Togari A. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta 1640: 137–142, 2003. doi: 10.1016/S0167-4889(03)00042-9. [PubMed] [CrossRef] [Google Scholar]

10. Armbrecht G, Belavý DL, Backström M, Beller G, Alexandre C, Rizzoli R, Felsenberg D. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res 26: 2399–2410, 2011. doi: 10.1002/jbmr.482. [PubMed] [CrossRef] [Google Scholar]

11. Artico M, Bosco S, Cavallotti C, Agostinelli E, Giuliani-Piccari G, Sciorio S, Cocco L, Vitale M. Noradrenergic and cholinergic innervation of the bone marrow. Int J Mol Med 10: 77–80, 2002. [PubMed] [Google Scholar]

12. Asada N, Katayama Y, Sato M, Minagawa K, Wakahashi K, Kawano H, Kawano Y, Sada A, Ikeda K, Matsui T, Tanimoto M. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 12: 737–747, 2013. doi: 10.1016/j.stem.2013.05.001. [PubMed] [CrossRef] [Google Scholar]

13. Asmus SE, Parsons S, Landis SC. Developmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum. J Neurosci 20: 1495–1504, 2000. [PMC free article] [PubMed] [Google Scholar]

14. Axelrod FB, Gold-von Simson G. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis 2: 39, 2007. doi: 10.1186/1750-1172-2-39. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Bab IA, Yirmiya R. Depression and bone mass. Ann N Y Acad Sci 1192: 170–175, 2010. doi: 10.1111/j.1749-6632.2009.05218.x. [PubMed] [CrossRef] [Google Scholar]

16. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovács KJ, Yirmiya R, Bab I. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci USA 109: 15455–15460, 2012. doi: 10.1073/pnas.1206061109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Bajayo A, Goshen I, Feldman S, Csernus V, Iverfeldt K, Shohami E, Yirmiya R, Bab I. Central IL-1 receptor signaling regulates bone growth and mass. Proc Natl Acad Sci USA 102: 12956–12961, 2005. doi: 10.1073/pnas.0502562102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Baker NL, Cook MN, Arrighi HM, Bullock R. Hip fracture risk and subsequent mortality among Alzheimer’s disease patients in the United Kingdom, 1988-2007. Age Ageing 40: 49–54, 2011. doi: 10.1093/ageing/afq146. [PubMed] [CrossRef] [Google Scholar]

19. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJ, Zhang L, Enriquez RF, Wong IP, McDonald MM, During M, Pierroz DD, Slack K, Shi YC, Yulyaningsih E, Aljanova A, Little DG, Ferrari SL, Sainsbury A, Eisman JA, Herzog H. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4: e8415, 2009. doi: 10.1371/journal.pone.0008415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Baldock PA, Lin S, Zhang L, Karl T, Shi Y, Driessler F, Zengin A, Hörmer B, Lee NJ, Wong IP, Lin EJ, Enriquez RF, Stehrer B, During MJ, Yulyaningsih E, Zolotukhin S, Ruohonen ST, Savontaus E, Sainsbury A, Herzog H. Neuropeptide Y attenuates stress-induced bone loss through suppression of noradrenaline circuits. J Bone Miner Res 29: 2238–2249, 2014. doi: 10.1002/jbmr.2205. [PubMed] [CrossRef] [Google Scholar]

21. Baldock PA, Sainsbury A, Allison S, Lin EJ, Couzens M, Boey D, Enriquez R, During M, Herzog H, Gardiner EM. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res 20: 1851–1857, 2005. doi: 10.1359/JBMR.050523. [PubMed] [CrossRef] [Google Scholar]

22. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109: 915–921, 2002. doi: 10.1172/JCI0214588. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Ballica R, Valentijn K, Khachatryan A, Guerder S, Kapadia S, Gundberg C, Gilligan J, Flavell RA, Vignery A. Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. J Bone Miner Res 14: 1067–1074, 1999. doi: 10.1359/jbmr.1999.14.7.1067. [PubMed] [CrossRef] [Google Scholar]

24. Baloh RW, Enrietto J, Jacobson KM, Lin A. Age-related changes in vestibular function: a longitudinal study. Ann N Y Acad Sci 942: 210–219, 2001. doi: 10.1111/j.1749-6632.2001.tb03747.x. [PubMed] [CrossRef] [Google Scholar]

25. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 29: 2635–2644, 2011. doi: 10.1200/JCO.2010.33.5422. [PubMed] [CrossRef] [Google Scholar]

26. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 139: 267–284, 2009. doi: 10.1016/j.cell.2009.09.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Batista S, Teter B, Sequeira K, Josyula S, Hoogs M, Ramanathan M, Benedict RH, Weinstock-Guttman B. Cognitive impairment is associated with reduced bone mass in multiple sclerosis. Mult Scler 18: 1459–1465, 2012. doi: 10.1177/1352458512440206. [PubMed] [CrossRef] [Google Scholar]

28. Beerthuizen A, Stronks DL, Van’t Spijker A, Yaksh A, Hanraets BM, Klein J, Huygen FJ. Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain 153: 1187–1192, 2012. doi: 10.1016/j.pain.2012.01.026. [PubMed] [CrossRef] [Google Scholar]

30. Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 182: 15–41, 2014. doi: 10.1016/j.autneu.2014.01.006. [PubMed] [CrossRef] [Google Scholar]

31. Bigelow RT, Semenov YR, Anson E, du Lac S, Ferrucci L, Agrawal Y. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging. J Assoc Res Otolaryngol 17: 433–440, 2016. doi: 10.1007/s10162-016-0577-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol 515: 533–542, 1999. doi: 10.1111/j.1469-7793.1999.533ac.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Bjurholm A. Neuroendocrine peptides in bone. Int Orthop 15: 325–329, 1991. doi: 10.1007/BF00186871. [PubMed] [CrossRef] [Google Scholar]

34. Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides 9: 165–171, 1988. doi: 10.1016/0196-9781(88)90023-X. [PubMed] [CrossRef] [Google Scholar]

35. Black DM, Rosen CJ. Clinical Practice. Postmenopausal Osteoporosis. N Engl J Med 374: 254–262, 2016. doi: 10.1056/NEJMcp1513724. [PubMed] [CrossRef] [Google Scholar]

36. Boes M, Kain M, Kakar S, Nicholls F, Cullinane D, Gerstenfeld L, Einhorn TA, Tornetta P III. Osteogenic effects of traumatic brain injury on experimental fracture-healing. J Bone Joint Surg Am 88: 738–743, 2006. doi: 10.2106/JBJS.D.02648. [PubMed] [CrossRef] [Google Scholar]

38. Bonnet N, Beaupied H, Vico L, Dolleans E, Laroche N, Courteix D, Benhamou CL. Combined effects of exercise and propranolol on bone tissue in ovariectomized rats. J Bone Miner Res 22: 578–588, 2007. doi: 10.1359/jbmr.070117. [PubMed] [CrossRef] [Google Scholar]

39. Bonnet N, Benhamou CL, Brunet-Imbault B, Arlettaz A, Horcajada MN, Richard O, Vico L, Collomp K, Courteix D. Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone 37: 622–633, 2005. doi: 10.1016/j.bone.2005.07.012. [PubMed] [CrossRef] [Google Scholar]

40. Bonnet N, Benhamou CL, Malaval L, Goncalves C, Vico L, Eder V, Pichon C, Courteix D. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol 217: 819–827, 2008. doi: 10.1002/jcp.21564. [PubMed] [CrossRef] [Google Scholar]

41. Bonnet N, Gadois C, McCloskey E, Lemineur G, Lespessailles E, Courteix D, Benhamou CL. Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40: 1209–1216, 2007. doi: 10.1016/j.bone.2007.01.006. [PubMed] [CrossRef] [Google Scholar]

42. Boulton AJ, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care 27: 1458–1486, 2004. doi: 10.2337/diacare.27.6.1458. [PubMed] [CrossRef] [Google Scholar]

43. Bouxsein ML, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL. Mice lacking beta-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 150: 144–152, 2009. doi: 10.1210/en.2008-0843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Brunoni AR, Kemp AH, Dantas EM, Goulart AC, Nunes MA, Boggio PS, Mill JG, Lotufo PA, Fregni F, Benseñor IM. Heart rate variability is a trait marker of major depressive disorder: evidence from the sertraline vs. electric current therapy to treat depression clinical study. Int J Neuropsychopharmacol 16: 1937–1949, 2013. doi: 10.1017/S1461145713000497. [PubMed] [CrossRef] [Google Scholar]

45. Burgess C, Cornelius V, Love S, Graham J, Richards M, Ramirez A. Depression and anxiety in women with early breast cancer: five year observational cohort study. BMJ 330: 702, 2005. doi: 10.1136/bmj.38343.670868.D3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Calvo W. The innervation of the bone marrow in laboratory animals. Am J Anat 123: 315–328, 1968. doi: 10.1002/aja.1001230206. [PubMed] [CrossRef] [Google Scholar]

47. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10: e1001363, 2012. doi: 10.1371/journal.pbio.1001363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Cappariello A, Ponzetti M, Rucci N. The “soft” side of the bone: unveiling its endocrine functions. Horm Mol Biol Clin Investig 28: 5–20, 2016. doi: 10.1515/hmbci-2016-0009. [PubMed] [CrossRef] [Google Scholar]

49. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA; Study of Osteoporotic Fractures Research Group . High blood pressure and bone-mineral loss in elderly white women: a prospective study. Lancet 354: 971–975, 1999. doi: 10.1016/S0140-6736(99)01437-3. [PubMed] [CrossRef] [Google Scholar]

50. Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178: 196–207, 2011. doi: 10.1016/j.neuroscience.2011.01.039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Caulfield MP. Muscarinic receptors–characterization, coupling and function. Pharmacol Ther 58: 319–379, 1993. doi: 10.1016/0163-7258(93)90027-B. [PubMed] [CrossRef] [Google Scholar]

52. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50: 279–290, 1998. [PubMed] [Google Scholar]

53. Cepeda MS, Carr DB, Lau J. Local anesthetic sympathetic blockade for complex regional pain syndrome. Cochrane Database Syst Rev (4): CD004598, 2005. doi: 10.1002/14651858.CD004598.pub2. [PubMed] [CrossRef] [Google Scholar]

54. Chapurlat RD, Duboeuf FP, Liens D, Meunier PJ. Dual energy X-ray absorptiometry in patients with lower limb reflex sympathetic dystrophy syndrome. J Rheumatol 23: 1557–1559, 1996. [PubMed] [Google Scholar]

55. Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain 155: 2323–2336, 2014. doi: 10.1016/j.pain.2014.08.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Chase LR, Aurbach GD. The effect of parathyroid hormone on the concentration of adenosine 3′,5′-monophosphate in skeletal tissue in vitro. J Biol Chem 245: 1520–1526, 1970. [PubMed] [Google Scholar]

57. Chida Y, Hamer M, Wardle J, Steptoe A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5: 466–475, 2008. doi: 10.1038/ncponc1134. [PubMed] [CrossRef] [Google Scholar]

58. Chou IC, Lin CC, Sung FC, Kao CH. Attention-deficit-hyperactivity disorder increases risk of bone fracture: a population-based cohort study. Dev Med Child Neurol 56: 1111–1116, 2014. doi: 10.1111/dmcn.12501. [PubMed] [CrossRef] [Google Scholar]

59. Cizza G, Ravn P, Chrousos GP, Gold PW. Depression: a major, unrecognized risk factor for osteoporosis? Trends Endocrinol Metab 12: 198–203, 2001. doi: 10.1016/S1043-2760(01)00407-6. [PubMed] [CrossRef] [Google Scholar]

60. Cohn AM, Cobb C, Hagman BT, Cameron A, Ehlke S, Mitchell JN. Implicit alcohol cognitions in risky drinking nicotine users with and without co-morbid major depressive disorder. Addict Behav 39: 797–802, 2014. doi: 10.1016/j.addbeh.2013.12.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9: 294–298, 1973. doi: 10.1007/BF01221857. [PubMed] [CrossRef] [Google Scholar]

62. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175: 405–415, 2002. doi: 10.1677/joe.0.1750405. [PubMed] [CrossRef] [Google Scholar]

63. Cruz Grecco Teixeira MB, Martins GM, Miranda-Rodrigues M, De Araújo IF, Oliveira R, Brum PC, Azevedo Gouveia CH. Lack of α2C-Adrenoceptor Results in Contrasting Phenotypes of Long Bones and Vertebra and Prevents the Thyrotoxicosis-Induced Osteopenia. PLoS One 11: e0146795, 2016. doi: 10.1371/journal.pone.0146795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Dalsgaard S, Leckman JF, Mortensen PB, Nielsen HS, Simonsen M. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry 2: 702–709, 2015. doi: 10.1016/S2215-0366(15)00271-0. [PubMed] [CrossRef] [Google Scholar]

65. De Souza RL, Pitsillides AA, Lanyon LE, Skerry TM, Chenu C. Sympathetic nervous system does not mediate the load-induced cortical new bone formation. J Bone Miner Res 20: 2159–2168, 2005. doi: 10.1359/JBMR.050812. [PubMed] [CrossRef] [Google Scholar]

66. Dénes A, Boldogkoi Z, Uhereczky G, Hornyák A, Rusvai M, Palkovits M, Kovács KJ. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134: 947–963, 2005. doi: 10.1016/j.neuroscience.2005.03.060. [PubMed] [CrossRef] [Google Scholar]

67. Denise P, Besnard S, Vignaux G, Sabatier JP, Edy E, Hitier M, Levasseur R. Sympathetic B antagonist prevents bone mineral density decrease induced by labyrinthectomy. Aviakosm Ekolog Med 43: 36–38, 2009. [PubMed] [Google Scholar]

68. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 60: 273–276, 2006. doi: 10.1016/j.biopha.2006.06.004. [PubMed] [CrossRef] [Google Scholar]

69. Diem SJ, Ruppert K, Cauley JA, Lian Y, Bromberger JT, Finkelstein JS, Greendale GA, Solomon DH. Rates of bone loss among women initiating antidepressant medication use in midlife. J Clin Endocrinol Metab 98: 4355–4363, 2013. doi: 10.1210/jc.2013-1971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Ding Y, Arai M, Kondo H, Togari A. Effects of capsaicin-induced sensory denervation on bone metabolism in adult rats. Bone 46: 1591–1596, 2010. doi: 10.1016/j.bone.2010.02.022. [PubMed] [CrossRef] [Google Scholar]

71. Dorn LD, Pabst S, Sontag LM, Kalkwarf HJ, Hillman JB, Susman EJ. Bone mass, depressive, and anxiety symptoms in adolescent girls: variation by smoking and alcohol use. J Adolesc Health 49: 498–504, 2011. doi: 10.1016/j.jadohealth.2011.03.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Drummond PD, Finch PM, Smythe GA. Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentrations in affected and unaffected limbs. Brain 114: 2025–2036, 1991. doi: 10.1093/brain/114.5.2025. [PubMed] [CrossRef] [Google Scholar]

73. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100: 197–207, 2000. doi: 10.1016/S0092-8674(00)81558-5. [PubMed] [CrossRef] [Google Scholar]

74. Dunn SL, Wilkinson JM, Crawford A, Le Maitre CL, Bunning RA. Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1β induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes. Osteoarthritis Cartilage 22: 133–144, 2014. doi: 10.1016/j.joca.2013.10.016. [PubMed] [CrossRef] [Google Scholar]

75. Eimar H, Alebrahim S, Manickam G, Al-Subaie A, Abu-Nada L, Murshed M, Tamimi F. Donepezil regulates energy metabolism and favors bone mass accrual. Bone 84: 131–138, 2016. doi: 10.1016/j.bone.2015.12.009. [PubMed] [CrossRef] [Google Scholar]

76. Eimar H, Perez Lara A, Tamimi I, Márquez Sánchez P, Gormaz Talavera I, Rojas Tomba F, García de la Oliva T, Tamimi F. Acetylcholinesterase inhibitors and healing of hip fracture in Alzheimer’s disease patients: a retrospective cohort study. J Musculoskelet Neuronal Interact 13: 454–463, 2013. [PubMed] [Google Scholar]

77. Eitner A, Pester J, Nietzsche S, Hofmann GO, Schaible HG. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 21: 1383–1391, 2013. doi: 10.1016/j.joca.2013.06.018. [PubMed] [CrossRef] [Google Scholar]

78. Elefteriou F. Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 473: 231–236, 2008. doi: 10.1016/j.abb.2008.03.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514–520, 2005. doi: 10.1038/nature03398. [PubMed] [CrossRef] [Google Scholar]

80. En-Nosse M, Hartmann S, Trinkaus K, Alt V, Stigler B, Heiss C, Kilian O, Schnettler R, Lips KS. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res 338: 203–215, 2009. doi: 10.1007/s00441-009-0871-1. [PubMed] [CrossRef] [Google Scholar]

81. Fan W, Bouwense SA, Crawford R, Xiao Y. Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats. J Mol Histol 41: 51–60, 2010. doi: 10.1007/s10735-010-9261-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Fang MA, Frost PJ, Iida-Klein A, Hahn TJ. Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells. Bone 12: 283–286, 1991. doi: 10.1016/8756-3282(91)90077-V. [PubMed] [CrossRef] [Google Scholar]

83. Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, Amin S, Melton LJ III, Joyner MJ, Khosla S. Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab 97: 4219–4227, 2012. doi: 10.1210/jc.2012-2381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Fermor B, Skerry TM. PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res 10: 1935–1943, 1995. doi: 10.1002/jbmr.5650101213. [PubMed] [CrossRef] [Google Scholar]

85. Flachenecker P, Reiners K, Krauser M, Wolf A, Toyka KV. Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler 7: 327–334, 2001. doi: 10.1177/135245850100700509. [PubMed] [CrossRef] [Google Scholar]

86. Flachenecker P, Wolf A, Krauser M, Hartung HP, Reiners K. Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance. J Neurol 246: 578–586, 1999. doi: 10.1007/s004150050407. [PubMed] [CrossRef] [Google Scholar]

87. Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, Freitas FR, Wang CC, Nonaka KO, Oliveira R, Casarini DE, Zorn TM, Brum PC, Gouveia CH. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res 26: 591–603, 2011. doi: 10.1002/jbmr.243. [PubMed] [CrossRef] [Google Scholar]

88. Forsén L, Meyer HE, Midthjell K, Edna TH. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trøndelag Health Survey. Diabetologia 42: 920–925, 1999. doi: 10.1007/s001250051248. [PubMed] [CrossRef] [Google Scholar]

89. Forst T, Beyer J, Pfützner A, Kann P, Schehler B, Lobmann R, Schäfer H, Andreas J, Bockisch A. Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabet Med 12: 874–879, 1995. doi: 10.1111/j.1464-5491.1995.tb00389.x. [PubMed] [CrossRef] [Google Scholar]

90. Francis NJ, Asmus SE, Landis SC. CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. Dev Biol 182: 76–87, 1997. doi: 10.1006/dbio.1996.8464. [PubMed] [CrossRef] [Google Scholar]

91. Fu L, Patel MS, Karsenty G. The circadian modulation of leptin-controlled bone formation. Prog Brain Res 153: 177–188, 2006. doi: 10.1016/S0079-6123(06)53010-9. [PubMed] [CrossRef] [Google Scholar]

92. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, Shibata S, Yoshida Y, Gu Z, Kimura A, Ma C, Xu C, Bando W, Fujita K, Shinomiya K, Hirai T, Asou Y, Enomoto M, Okano H, Okawa A, Itoh H. Sema3A regulates bone-mass accrual through sensory innervations. Nature 497: 490–493, 2013. doi: 10.1038/nature12115. [PubMed] [CrossRef] [Google Scholar]

93. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623–628, 1999. doi: 10.1038/9467. [PubMed] [CrossRef] [Google Scholar]

94. Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Coughlin KA, Kaczmarska MJ, Castaneda-Corral G, Bloom AP, Kuskowski MA, Mantyh PW. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis Rheum 64: 2223–2232, 2012. doi: 10.1002/art.34385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Giese-Davis J, Wilhelm FH, Conrad A, Abercrombie HC, Sephton S, Yutsis M, Neri E, Taylor CB, Kraemer HC, Spiegel D. Depression and stress reactivity in metastatic breast cancer. Psychosom Med 68: 675–683, 2006. doi: 10.1097/01.psy.0000238216.88515.e5. [PubMed] [CrossRef] [Google Scholar]

96. Gold DT, Solimeo S. Osteoporosis and depression: a historical perspective. Curr Osteoporos Rep 4: 134–139, 2006. doi: 10.1007/s11914-996-0021-6. [PubMed] [CrossRef] [Google Scholar]

97. Gordeladze JO, Drevon CA, Syversen U, Reseland JE. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85: 825–836, 2002. doi: 10.1002/jcb.10156. [PubMed] [CrossRef] [Google Scholar]

98. Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P. Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 143: 1129–1136, 1996. doi: 10.1093/oxfordjournals.aje.a008690. [PubMed] [CrossRef] [Google Scholar]

99. Graham S, Hammond-Jones D, Gamie Z, Polyzois I, Tsiridis E, Tsiridis E. The effect of beta-blockers on bone metabolism as potential drugs under investigation for osteoporosis and fracture healing. Expert Opin Investig Drugs 17: 1281–1299, 2008. doi: 10.1517/13543784.17.9.1281. [PubMed] [CrossRef] [Google Scholar]

100. Gregg EW, Sorlie P, Paulose-Ram R, Gu Q, Eberhardt MS, Wolz M, Burt V, Curtin L, Engelgau M, Geiss L; 1999-2000 national health and nutrition examination survey . Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999-2000 national health and nutrition examination survey. Diabetes Care 27: 1591–1597, 2004. doi: 10.2337/diacare.27.7.1591. [PubMed] [CrossRef] [Google Scholar]

101. Gu J, Ikeda H, Suda H. Sympathetic Regulation of Tertiary Dentinogenesis via Beta-2 Adrenergic Receptor on Rat Odontoblasts. J Endod 41: 1056–1060, 2015. doi: 10.1016/j.joen.2015.01.010. [PubMed] [CrossRef] [Google Scholar]

102. Gunal DI, Afsar N, Tanridag T, Aktan S. Autonomic dysfunction in multiple sclerosis: correlation with disease-related parameters. Eur Neurol 48: 1–5, 2002. doi: 10.1159/000064949. [PubMed] [CrossRef] [Google Scholar]

103. Guo TZ, Offley SC, Boyd EA, Jacobs CR, Kingery WS. Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Pain 108: 95–107, 2004. doi: 10.1016/j.pain.2003.12.010. [PubMed] [CrossRef] [Google Scholar]

104. Hamrick MW. Leptin, bone mass, and the thrifty phenotype. J Bone Miner Res 19: 1607–1611, 2004. doi: 10.1359/JBMR.040712. [PubMed] [CrossRef] [Google Scholar]

105. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34: 376–383, 2004. doi: 10.1016/j.bone.2003.11.020. [PubMed] [CrossRef] [Google Scholar]

106. Han J, Zou Z, Zhu C, Deng J, Wang J, Ran X, Shi C, Ai G, Li R, Cheng T, Su Y. DNA synthesis of rat bone marrow mesenchymal stem cells through alpha1-adrenergic receptors. Arch Biochem Biophys 490: 96–102, 2009. doi: 10.1016/j.abb.2009.08.009. [PubMed] [CrossRef] [Google Scholar]

107. Haney EM, Chan BK, Diem SJ, Ensrud KE, Cauley JA, Barrett-Connor E, Orwoll E, Bliziotes MM; Osteoporotic Fractures in Men Study Group . Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 167: 1246–1251, 2007. doi: 10.1001/archinte.167.12.1246. [PubMed] [CrossRef] [Google Scholar]

108. Harden RN, Duc TA, Williams TR, Coley D, Cate JC, Gracely RH. Norepinephrine and epinephrine levels in affected versus unaffected limbs in sympathetically maintained pain. Clin J Pain 10: 324–330, 1994. doi: 10.1097/00002508-199412000-00014. [PubMed] [CrossRef] [Google Scholar]

109. Hart EC, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology (Bethesda) 29: 8–15, 2014. doi: 10.1152/physiol.00031.2013. [PubMed] [CrossRef] [Google Scholar]

110. Harun A, Li C, Bridges JF, Agrawal Y. Understanding the Experience of Age-Related Vestibular Loss in Older Individuals: A Qualitative Study. Patient 9: 303–309, 2016. doi: 10.1007/s40271-015-0156-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Hayek S, Laplaza FJ, Axelrod FB, Burke SW. Spinal deformity in familial dysautonomia. Prevalence, and results of bracing. J Bone Joint Surg Am 82: 1558–1562, 2000. doi: 10.2106/00004623-200011000-00007. [PubMed] [CrossRef] [Google Scholar]

112. Hearn AP, Silber E. Osteoporosis in multiple sclerosis. Mult Scler 16: 1031–1043, 2010. doi: 10.1177/1352458510368985. [PubMed] [CrossRef] [Google Scholar]

113. Heffner KL, Loving TJ, Robles TF, Kiecolt-Glaser JK. Examining psychosocial factors related to cancer incidence and progression: in search of the silver lining. Brain Behav Immun 17, Suppl 1: 109–111, 2003. doi: 10.1016/S0889-1591(02)00076-4. [PubMed] [CrossRef] [Google Scholar]

114. Heffner MA, Anderson MJ, Yeh GC, Genetos DC, Christiansen BA. Altered bone development in a mouse model of peripheral sensory nerve inactivation. J Musculoskelet Neuronal Interact 14: 1–9, 2014. [PMC free article] [PubMed] [Google Scholar]

115. Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides 38: 213–224, 2004. doi: 10.1016/j.npep.2004.05.002. [PubMed] [CrossRef] [Google Scholar]

116. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87: 1932–1936, 1990. doi: 10.1073/pnas.87.5.1932. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Hill EL, Elde R. Distribution of CGRP-, VIP-, D beta H-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res 264: 469–480, 1991. doi: 10.1007/BF00319037. [PubMed] [CrossRef] [Google Scholar]

118. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232: 868–871, 1986. doi: 10.1126/science.3518059. [PubMed] [CrossRef] [Google Scholar]

119. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC. Leptin inhibits osteoclast generation. J Bone Miner Res 17: 200–209, 2002. doi: 10.1359/jbmr.2002.17.2.200. [PubMed] [CrossRef] [Google Scholar]

120. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci USA 78: 3204–3208, 1981. doi: 10.1073/pnas.78.5.3204. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Huang HH, Brennan TC, Muir MM, Mason RS. Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 220: 267–275, 2009. doi: 10.1002/jcp.21761. [PubMed] [CrossRef] [Google Scholar]

122. Huang TL, Lin CC. Advances in biomarkers of major depressive disorder. Adv Clin Chem 68: 177–204, 2015. doi: 10.1016/bs.acc.2014.11.003. [PubMed] [CrossRef] [Google Scholar]

123. Hukkanen M, Konttinen YT, Rees RG, Santavirta S, Terenghi G, Polak JM. Distribution of nerve endings and sensory neuropeptides in rat synovium, meniscus and bone. Int J Tissue React 14: 1–10, 1992. [PubMed] [Google Scholar]

124. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54: 969–979, 1993. doi: 10.1016/0306-4522(93)90588-7. [PubMed] [CrossRef] [Google Scholar]

125. Ibrahim AI, Hawamdeh ZM, Alsharif AA. Evaluation of bone mineral density in children with perinatal brachial plexus palsy: effectiveness of weight bearing and traditional exercises. Bone 49: 499–505, 2011. doi: 10.1016/j.bone.2011.05.015. [PubMed] [CrossRef] [Google Scholar]

126. Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, van’t Hof RJ, Ralston SH. Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10: 139–147, 2009. doi: 10.1016/j.cmet.2009.07.006. [PubMed] [CrossRef] [Google Scholar]

127. Igwe JC, Jiang X, Paic F, Ma L, Adams DJ, Baldock PA, Pilbeam CC, Kalajzic I. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem 108: 621–630, 2009. doi: 10.1002/jcb.22294. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Ilias I, Alesci S, Gold PW, Chrousos GP. Depression and osteoporosis in men: association or casual link? Hormones (Athens) 5: 9–16, 2006. doi: 10.14310/horm.2002.11164. [PubMed] [CrossRef] [Google Scholar]

129. Imai S, Tokunaga Y, Maeda T, Kikkawa M, Hukuda S. Calcitonin gene-related peptide, substance P, and tyrosine hydroxylase-immunoreactive innervation of rat bone marrows: an immunohistochemical and ultrastructural investigation on possible efferent and afferent mechanisms. J Orthop Res 15: 133–140, 1997. doi: 10.1002/jor.1100150120. [PubMed] [CrossRef] [Google Scholar]

130. Inchiosa MA Jr, Kizelshteyn G. Treatment of complex regional pain syndrome type I with oral phenoxybenzamine: rationale and case reports. Pain Pract 8: 125–132, 2008. doi: 10.1111/j.1533-2500.2007.00170.x. [PubMed] [CrossRef] [Google Scholar]

131. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13: 485–488, 1996. doi: 10.1038/ng0896-485. [PubMed] [CrossRef] [Google Scholar]

132. Ishac EJ, Jiang L, Lake KD, Varga K, Abood ME, Kunos G. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118: 2023–2028, 1996. doi: 10.1111/j.1476-5381.1996.tb15639.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Jackson MZ, Gruner KA, Qin C, Tourtellotte WG. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141: 2452–2461, 2014. doi: 10.1242/dev.107797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Jacob L, Kostev K. Impact of attention deficit hyperactivity disorder therapy on fracture risk in children treated in German pediatric practices. Osteoporos Int 28: 1265–1269, 2017. doi: 10.1007/s00198-016-3842-x. [PubMed] [CrossRef] [Google Scholar]

135. Jiao K, Niu LN, Li QH, Ren GT, Zhao CM, Liu YD, Tay FR, Wang MQ. β2-Adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep 5: 12593, 2015. doi: 10.1038/srep12593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther 14: R101, 2012. doi: 10.1186/ar3826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, Vanderah TW, Mantyh PW. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone 46: 306–313, 2010. doi: 10.1016/j.bone.2009.09.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Jindal RD, Vasko RC Jr, Jennings JR, Fasiczka AL, Thase ME, Reynolds CF III. Heart rate variability in depressed elderly. Am J Geriatr Psychiatry 16: 861–866, 2008. doi: 10.1097/JGP.0b013e318180053d. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440: 692–696, 2006. doi: 10.1038/nature04524. [PubMed] [CrossRef] [Google Scholar]

140. Kado DM, Lui LY, Cummings SR; The Study Of Osteoporotic Fractures Research Group . Rapid resting heart rate: a simple and powerful predictor of osteoporotic fractures and mortality in older women. J Am Geriatr Soc 50: 455–460, 2002. doi: 10.1046/j.1532-5415.2002.50110.x. [PubMed] [CrossRef] [Google Scholar]

141. Kahl KG, Rudolf S, Stoeckelhuber BM, Dibbelt L, Gehl HB, Markhof K, Hohagen F, Schweiger U. Bone mineral density, markers of bone turnover, and cytokines in young women with borderline personality disorder with and without comorbid major depressive disorder. Am J Psychiatry 162: 168–174, 2005. doi: 10.1176/appi.ajp.162.1.168. [PubMed] [CrossRef] [Google Scholar]

142. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med 208: 841–851, 2011. doi: 10.1084/jem.20102608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Kajimura D, Paone R, Mann JJ, Karsenty G. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo. Mol Metab 3: 770–777, 2014. doi: 10.1016/j.molmet.2014.07.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14: 3389–3396, 2005. doi: 10.1093/hmg/ddi370. [PubMed] [CrossRef] [Google Scholar]

145. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 25: 629–648, 2009. doi: 10.1146/annurev.cellbio.042308.113308. [PubMed] [CrossRef] [Google Scholar]

146. Karsenty G, Olson EN. Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell 164: 1248–1256, 2016. doi: 10.1016/j.cell.2016.02.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Katayama PL, Dias DP, Silva LE, Virtuoso-Junior JS, Marocolo M. Cardiac autonomic modulation in non-frail, pre-frail and frail elderly women: a pilot study. Aging Clin Exp Res 27: 621–629, 2015. doi: 10.1007/s40520-015-0320-9. [PubMed] [CrossRef] [Google Scholar]

148. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124: 407–421, 2006. doi: 10.1016/j.cell.2005.10.041. [PubMed] [CrossRef] [Google Scholar]

149. Katsuragawa Y. Effect of methamphetamine abuse on the bone quality of the calcaneus. Forensic Sci Int 101: 43–48, 1999. doi: 10.1016/S0379-0738(99)00010-9. [PubMed] [CrossRef] [Google Scholar]

150. Kaufmann H, Schatz IJ. Pure autonomic failure. In: Primer on the Autonomic Nervous System. San Diego, CA: Academic, 2004, p. 309. doi: 10.1016/B978-012589762-4/50084-0. [CrossRef] [Google Scholar]

151. Kawai M, Kinoshita S, Shimba S, Ozono K, Michigami T. Sympathetic activation induces skeletal Fgf23 expression in a circadian rhythm-dependent manner. J Biol Chem 289: 1457–1466, 2014. doi: 10.1074/jbc.M113.500850. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Kayath MJ, Dib SA, Vieira JG. Prevalence and magnitude of osteopenia associated with insulin-dependent diabetes mellitus. J Diabetes Complications 8: 97–104, 1994. doi: 10.1016/1056-8727(94)90058-2. [PubMed] [CrossRef] [Google Scholar]

153. Kaye DM, Esler MD. Autonomic control of the aging heart. Neuromolecular Med 10: 179–186, 2008. doi: 10.1007/s12017-008-8034-1. [PubMed] [CrossRef] [Google Scholar]

154. Kellenberger S, Muller K, Richener H, Bilbe G. Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 22: 471–478, 1998. doi: 10.1016/S8756-3282(98)00026-X. [PubMed] [CrossRef] [Google Scholar]

155. Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 67: 1067–1074, 2010. doi: 10.1016/j.biopsych.2009.12.012. [PubMed] [CrossRef] [Google Scholar]

156. Kennedy OD, Lendhey M, Mauer P, Philip A, Basta-Pljakic J, Schaffler MB. Microdamage induced by in vivo Reference Point Indentation in mice is repaired by osteocyte-apoptosis mediated remodeling. Bone 95: 192–198, 2017. doi: 10.1016/j.bone.2016.11.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health 34: 119–138, 2013. doi: 10.1146/annurev-publhealth-031912-114409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Kim CH, Zabetian CP, Cubells JF, Cho S, Biaggioni I, Cohen BM, Robertson D, Kim KS. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. Am J Med Genet 108: 140–147, 2002. doi: 10.1002/ajmg.10196. [PubMed] [CrossRef] [Google Scholar]

159. Kim EY, Kwon DH, Lee BD, Kim YT, Ahn YB, Yoon KY, Sa SJ, Cho W, Cho SN. Frequency of osteoporosis in 46 men with methamphetamine abuse hospitalized in a National Hospital. Forensic Sci Int 188: 75–80, 2009. doi: 10.1016/j.forsciint.2009.03.016. [PubMed] [CrossRef] [Google Scholar]

160. Kim J, Nakamura T, Kikuchi H, Yoshiuchi K, Sasaki T, Yamamoto Y. Covariation of depressive mood and spontaneous physical activity in major depressive disorder: toward continuous monitoring of depressive mood. IEEE J Biomed Health Inform 19: 1347–1355, 2015. doi: 10.1109/JBHI.2015.2440764. [PubMed] [CrossRef] [Google Scholar]

161. Kim JH, Jung MH, Lee JM, Son HS, Cha BY, Chang SA. Diabetic peripheral neuropathy is highly associated with nontraumatic fractures in Korean patients with type 2 diabetes mellitus. Clin Endocrinol (Oxf) 77: 51–55, 2012. doi: 10.1111/j.1365-2265.2011.04222.x. [PubMed] [CrossRef] [Google Scholar]

162. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9: 441–445, 1995. doi: 10.1096/fasebj.9.5.7896017. [PubMed] [CrossRef] [Google Scholar]

163. Kliemann K, Kneffel M, Bergen I, Kampschulte M, Langheinrich AC, Dürselen L, Ignatius A, Kilian O, Schnettler R, Lips KS. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Life Sci 91: 997–1002, 2012. doi: 10.1016/j.lfs.2012.07.024. [PubMed] [CrossRef] [Google Scholar]

164. Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, Sondergaard R, Escudero AV, Baraghithy S, Attar-Namdar M, Friedlander-Barenboim S, Mathavan N, Isaksson H, Mechoulam R, Müller R, Bajayo A, Gabet Y, Bab I. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J Bone Miner Res 30: 1905–1913, 2015. doi: 10.1002/jbmr.2513. [PubMed] [CrossRef] [Google Scholar]

165. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, Nakashima K, Karsenty G, Noda M. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280: 30192–30200, 2005. doi: 10.1074/jbc.M504179200. [PubMed] [CrossRef] [Google Scholar]

166. Kondo H, Takeuchi S, Togari A. β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab 304: E507–E515, 2013. doi: 10.1152/ajpendo.00191.2012. [PubMed] [CrossRef] [Google Scholar]

167. Kronenberg HM. Developmental regulation of the growth plate. Nature 423: 332–336, 2003. doi: 10.1038/nature01657. [PubMed] [CrossRef] [Google Scholar]

168. Lahat E, Weiss M, Ben-Shlomo A, Evans S, Bistritzer T. Bone mineral density and turnover in children with attention-deficit hyperactivity disorder receiving methylphenidate. J Child Neurol 15: 436–439, 2000. doi: 10.1177/088307380001500702. [PubMed] [CrossRef] [Google Scholar]

169. Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC, Arevalo JM, Morizono K, Cole SW. Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav Immun 26: 635–641, 2012. doi: 10.1016/j.bbi.2012.01.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Lanyon LE. Control of bone architecture by functional load bearing. J Bone Miner Res 7, Suppl 2: S369–S375, 1992. doi: 10.1002/jbmr.5650071403. [PubMed] [CrossRef] [Google Scholar]

171. Laplaza FJ, Turajane T, Axelrod FB, Burke SW. Nonspinal orthopaedic problems in familial dysautonomia (Riley-Day syndrome). J Pediatr Orthop 21: 229–232, 2001. doi: 10.1097/01241398-200103000-00019. [PubMed] [CrossRef] [Google Scholar]

172. Lavi S, Nevo O, Thaler I, Rosenfeld R, Dayan L, Hirshoren N, Gepstein L, Jacob G. Effect of aging on the cardiovascular regulatory systems in healthy women. Am J Physiol Regul Integr Comp Physiol 292: R788–R793, 2007. doi: 10.1152/ajpregu.00352.2006. [PubMed] [CrossRef] [Google Scholar]

173. Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A, Baldock PA, Herzog H. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone 48: 461–467, 2011. doi: 10.1016/j.bone.2010.10.174. [PubMed] [CrossRef] [Google Scholar]

174. Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 91: 3739–3743, 1994. doi: 10.1073/pnas.91.9.3739. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Levasseur R, Dargent-Molina P, Sabatier JP, Marcelli C, Bréart G. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the Epidemiologie de l’Osteoporose prospective study. J Am Geriatr Soc 53: 550–552, 2005. doi: 10.1111/j.1532-5415.2005.53178_7.x. [PubMed] [CrossRef] [Google Scholar]

176. Levasseur R, Sabatier JP, Etard O, Denise P, Reber A. Labyrinthectomy decreases bone mineral density in the femoral metaphysis in rats. J Vestib Res 14: 361–365, 2004. [PubMed] [Google Scholar]

177. Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A. Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16: 1505–1510, 2001. doi: 10.1359/jbmr.2001.16.8.1505. [PubMed] [CrossRef] [Google Scholar]

178. Li J, Kreicbergs A, Bergström J, Stark A, Ahmed M. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: a study in rat angulated tibia. J Orthop Res 25: 1204–1212, 2007. doi: 10.1002/jor.20406. [PubMed] [CrossRef] [Google Scholar]

179. Li W, Shi X, Wang L, Guo T, Wei T, Cheng K, Rice KC, Kingery WS, Clark JD. Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain 154: 1224–1236, 2013. doi: 10.1016/j.pain.2013.03.033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Limonard EJ, Schoenmaker T, de Vries TJ, Tanck MW, Heijboer AC, Endert E, Fliers E, Everts V, Bisschop PH. Clonidine increases bone resorption in humans. Osteoporos Int 27: 1063–1071, 2016. doi: 10.1007/s00198-015-3312-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Lipski S. Effects of beta-adrenergic stimulation on bone-marrow function in normal and sublethally irradiated mice. I. The effect of isoproterenol on cAMP content in bone-marrow cells in vivo and in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 29: 359–366, 1976. doi: 10.1080/09553007614550411. [PubMed] [CrossRef] [Google Scholar]

182. Liu PS, Chen YY, Feng CK, Lin YH, Yu TC. Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol 650: 34–40, 2011. doi: 10.1016/j.ejphar.2010.09.031. [PubMed] [CrossRef] [Google Scholar]

183. Long H, Ahmed M, Ackermann P, Stark A, Li J. Neuropeptide Y innervation during fracture healing and remodeling. A study of angulated tibial fractures in the rat. Acta Orthop 81: 639–646, 2010. doi: 10.3109/17453674.2010.504609. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Lorenz J, Schäfer N, Bauer R, Jenei-Lanzl Z, Springorum RH, Grässel S. Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses. Osteoarthritis Cartilage 24: 325–334, 2016. doi: 10.1016/j.joca.2015.08.007. [PubMed] [CrossRef] [Google Scholar]

185. Lorton D, Bellinger DL. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 16: 5635–5665, 2015. doi: 10.3390/ijms16035635. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Low PA, Opfer-Gehrking TL, Textor SC, Benarroch EE, Shen WK, Schondorf R, Suarez GA, Rummans TA. Postural tachycardia syndrome (POTS). Neurology 45, Suppl 5: S19–S25, 1995. [PubMed] [Google Scholar]

187. Lundberg P, Lundgren I, Mukohyama H, Lehenkari PP, Horton MA, Lerner UH. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptor subtypes in mouse calvarial osteoblasts: presence of VIP-2 receptors and differentiation-induced expression of VIP-1 receptors. Endocrinology 142: 339–347, 2001. doi: 10.1210/endo.142.1.7912. [PubMed] [CrossRef] [Google Scholar]

188. Ma Y, Krueger JJ, Redmon SN, Uppuganti S, Nyman JS, Hahn MK, Elefteriou F. Extracellular norepinephrine clearance by NET is required for skeletal homeostasis. J Biol Chem 288: 30105–30113, 2013. doi: 10.1074/jbc.M113.481309. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 152: 1412–1422, 2011. doi: 10.1210/en.2010-0881. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Maayan C, Bar-On E, Foldes AJ, Gesundheit B, Pollak RD. Bone mineral density and metabolism in familial dysautonomia. Osteoporos Int 13: 429–433, 2002. doi: 10.1007/s001980200050. [PubMed] [CrossRef] [Google Scholar]

191. Maayan C, Becker Y, Gesundheit B, Girgis SI. Calcitonin gene related peptide in familial dysautonomia. Neuropeptides 35: 189–195, 2001. doi: 10.1054/npep.2001.0863. [PubMed] [CrossRef] [Google Scholar]

192. Maayan C, Kaplan E, Shachar S, Peleg O, Godfrey S. Incidence of familial dysautonomia in Israel 1977-1981. Clin Genet 32: 106–108, 1987. doi: 10.1111/j.1399-0004.1987.tb03334.x. [PubMed] [CrossRef] [Google Scholar]

193. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O’Leary P, Mantyh PW. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113: 155–166, 2002. doi: 10.1016/S0306-4522(02)00165-3. [PubMed] [CrossRef] [Google Scholar]

194. Madsen JE, Hukkanen M, Aune AK, Basran I, Møller JF, Polak JM, Nordsletten L. Fracture healing and callus innervation after peripheral nerve resection in rats. Clin Orthop Relat Res (351): 230–240, 1998. [PubMed] [Google Scholar]

195. Mandl P, Hayer S, Karonitsch T, Scholze P, Győri D, Sykoutri D, Blüml S, Mócsai A, Poór G, Huck S, Smolen JS, Redlich K. Nicotinic acetylcholine receptors modulate osteoclastogenesis. Arthritis Res Ther 18: 63, 2016. doi: 10.1186/s13075-016-0961-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Manicourt DH, Brasseur JP, Boutsen Y, Depreseux G, Devogelaer JP. Role of alendronate in therapy for posttraumatic complex regional pain syndrome type I of the lower extremity. Arthritis Rheum 50: 3690–3697, 2004. doi: 10.1002/art.20591. [PubMed] [CrossRef] [Google Scholar]

198. Maronde E, Schilling AF, Seitz S, Schinke T, Schmutz I, van der Horst G, Amling M, Albrecht U. The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation. PLoS One 5: e11527, 2010. doi: 10.1371/journal.pone.0011527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Marrie RA, Cutter G, Tyry T, Vollmer T. A cross-sectional study of bone health in multiple sclerosis. Neurology 73: 1394–1398, 2009. doi: 10.1212/WNL.0b013e3181beece8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett 427: 148–152, 2007. doi: 10.1016/j.neulet.2007.08.055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Matic I, Matthews BG, Kizivat T, Igwe JC, Marijanovic I, Ruohonen ST, Savontaus E, Adams DJ, Kalajzic I. Bone-specific overexpression of NPY modulates osteogenesis. J Musculoskelet Neuronal Interact 12: 209–218, 2012. [PMC free article] [PubMed] [Google Scholar]

202. McCauley LK, Koh AJ, Beecher CA, Cui Y, Rosol TJ, Franceschi RT. PTH/PTHrP receptor is temporally regulated during osteoblast differentiation and is associated with collagen synthesis. J Cell Biochem 61: 638–647, 1996. doi: 10.1002/(SICI)1097-4644(19960616)61:4<638::AID-JCB18>3.0.CO;2-B. [PubMed] [CrossRef] [Google Scholar]

203. Melamed E, Robinson D, Halperin N, Wallach N, Keren O, Groswasser Z. Brain injury-related heterotopic bone formation: treatment strategy and results. Am J Phys Med Rehabil 81: 670–674, 2002. doi: 10.1097/00002060-200209000-00006. [PubMed] [CrossRef] [Google Scholar]

204. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29: 2645–2652, 2011. doi: 10.1200/JCO.2010.33.4441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Melton LJ III, Beard CM, Kokmen E, Atkinson EJ, O’Fallon WM. Fracture risk in patients with Alzheimer’s disease. J Am Geriatr Soc 42: 614–619, 1994. doi: 10.1111/j.1532-5415.1994.tb06859.x. [PubMed] [CrossRef] [Google Scholar]

206. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452: 442–447, 2008. doi: 10.1038/nature06685. [PubMed] [CrossRef] [Google Scholar]

207. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834, 2010. doi: 10.1038/nature09262. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Mendy A, Vieira ER, Albatineh AN, Nnadi AK, Lowry D, Gasana J. Low bone mineral density is associated with balance and hearing impairments. Ann Epidemiol 24: 58–62, 2014. doi: 10.1016/j.annepidem.2013.10.012. [PubMed] [CrossRef] [Google Scholar]

209. Michelson D, Stratakis C, Hill L, Reynolds J, Galliven E, Chrousos G, Gold P. Bone mineral density in women with depression. N Engl J Med 335: 1176–1181, 1996. doi: 10.1056/NEJM199610173351602. [PubMed] [CrossRef] [Google Scholar]

210. Miyasaka N, Akiyoshi M, Kubota T. Relationship between autonomic nervous system activity and bone mineral density in non-medicated perimenopausal women. J Bone Miner Metab 32: 588–592, 2014. doi: 10.1007/s00774-013-0534-x. [PubMed] [CrossRef] [Google Scholar]

211. Mlakar V, Jurkovic Mlakar S, Zupan J, Komadina R, Prezelj J, Marc J. ADRA2A is involved in neuro-endocrine regulation of bone resorption. J Cell Mol Med 19: 1520–1529, 2015. doi: 10.1111/jcmm.12505. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Moore RE, Smith CK II, Bailey CS, Voelkel EF, Tashjian AH Jr. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner 23: 301–315, 1993. doi: 10.1016/S0169-6009(08)80105-5. [PubMed] [CrossRef] [Google Scholar]

213. Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol 281: R683–R698, 2001. doi: 10.1152/ajpregu.2001.281.3.R683. [PubMed] [CrossRef] [Google Scholar]

214. Morrison SF, Milner TA, Reis DJ. Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J Neurosci 8: 1286–1301, 1988. [PMC free article] [PubMed] [Google Scholar]

215. Mosti MP, Flemmen G, Hoff J, Stunes AK, Syversen U, Wang E. Impaired skeletal health and neuromuscular function among amphetamine users in clinical treatment. Osteoporos Int 27: 1003–1010, 2016. doi: 10.1007/s00198-015-3371-z. [PubMed] [CrossRef] [Google Scholar]

216. Mukohyama H, Ransjö M, Taniguchi H, Ohyama T, Lerner UH. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK. Biochem Biophys Res Commun 271: 158–163, 2000. doi: 10.1006/bbrc.2000.2599. [PubMed] [CrossRef] [Google Scholar]

217. Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR, Brekken RA, Sterling JA, Elefteriou F. Skeletal Colonization by Breast Cancer Cells Is Stimulated by an Osteoblast and β2AR-Dependent Neo-Angiogenic Switch. J Bone Miner Res 32: 1442–1454, 2017. doi: 10.1002/jbmr.3133. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365: 61–65, 1993. doi: 10.1038/365061a0. [PubMed] [CrossRef] [Google Scholar]

219. Muschter D, Schäfer N, Stangl H, Straub RH, Grässel S. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis. PLoS One 10: e0139726, 2015. doi: 10.1371/journal.pone.0139726. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL; IOF Bone and Diabetes Working Group . Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13: 208–219, 2017. doi: 10.1038/nrendo.2016.153. [PubMed] [CrossRef] [Google Scholar]

221. Nestler EJ, Alreja M, Aghajanian GK. Molecular control of locus coeruleus neurotransmission. Biol Psychiatry 46: 1131–1139, 1999. doi: 10.1016/S0006-3223(99)00158-4. [PubMed] [CrossRef] [Google Scholar]

222. Nicodemus KK, Folsom AR; Iowa Women’s Health Study . Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24: 1192–1197, 2001. doi: 10.2337/diacare.24.7.1192. [PubMed] [CrossRef] [Google Scholar]

223. Niedermair T, Kuhn V, Doranehgard F, Stange R, Wieskötter B, Beckmann J, Salmen P, Springorum HR, Straub RH, Zimmer A, Grifka J, Grässel S. Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol 38: 22–35, 2014. doi: 10.1016/j.matbio.2014.06.007. [PubMed] [CrossRef] [Google Scholar]

224. Nieves J, Cosman F, Herbert J, Shen V, Lindsay R. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology 44: 1687–1692, 1994. doi: 10.1212/WNL.44.9.1687. [PubMed] [CrossRef] [Google Scholar]

225. Nishiura T, Abe K. Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol 52: 778–785, 2007. doi: 10.1016/j.archoralbio.2007.01.005. [PubMed] [CrossRef] [Google Scholar]

226. Nordsletten L, Madsen JE, Almaas R, Rootwelt T, Halse J, Konttinen YT, Hukkanen M, Santavirta S. The neuronal regulation of fracture healing. Effects of sciatic nerve resection in rat tibia. Acta Orthop Scand 65: 299–304, 1994. doi: 10.3109/17453679408995457. [PubMed] [CrossRef] [Google Scholar]

227. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol 3: 457–484, 2008. doi: 10.1146/annurev.pathmechdis.3.121806.151431. [PubMed] [CrossRef] [Google Scholar]

228. Obri A, Makinistoglu MP, Zhang H, Karsenty G. HDAC4 integrates PTH and sympathetic signaling in osteoblasts. J Cell Biol 205: 771–780, 2014. doi: 10.1083/jcb.201403138. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, Frenkel B, Shohami E, Bab I. CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26: 308–316, 2011. doi: 10.1002/jbmr.228. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103: 696–701, 2006. doi: 10.1073/pnas.0504187103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Offley SC, Guo TZ, Wei T, Clark JD, Vogel H, Lindsey DP, Jacobs CR, Yao W, Lane NE, Kingery WS. Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res 20: 257–267, 2005. doi: 10.1359/JBMR.041108. [PubMed] [CrossRef] [Google Scholar]

232. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol 16: 191–220, 2000. doi: 10.1146/annurev.cellbio.16.1.191. [PubMed] [CrossRef] [Google Scholar]

233. Ortuño MJ, Robinson ST, Subramanyam P, Paone R, Huang YY, Guo XE, Colecraft HM, Mann JJ, Ducy P. Serotonin-reuptake inhibitors act centrally to cause bone loss in mice by counteracting a local anti-resorptive effect. Nat Med 22: 1170–1179, 2016. doi: 10.1038/nm.4166. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Pacifici R. T cells, osteoblasts, and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann N Y Acad Sci 1364: 11–24, 2016. doi: 10.1111/nyas.12969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8: 98–101, 1989. [PubMed] [Google Scholar]

236. Paic F, Igwe JC, Nori R, Kronenberg MS, Franceschetti T, Harrington P, Kuo L, Shin DG, Rowe DW, Harris SE, Kalajzic I. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45: 682–692, 2009. doi: 10.1016/j.bone.2009.06.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Pearson J, Dancis J, Axelrod F, Grover N. The sural nerve in familial dysautonomia. J Neuropathol Exp Neurol 34: 413–424, 1975. doi: 10.1097/00005072-197509000-00004. [PubMed] [CrossRef] [Google Scholar]

238. Perry BA, Archer KR, Song Y, Ma Y, Green JK, Elefteriou F, Dahir KM. Medication therapy for attention deficit/hyperactivity disorder is associated with lower risk of fracture: a retrospective cohort study. Osteoporos Int 27: 2223–2227, 2016. doi: 10.1007/s00198-016-3547-1. [PubMed] [CrossRef] [Google Scholar]

239. Peterka RJ, Black FO, Schoenhoff MB. Age-related changes in human vestibulo-ocular and optokinetic reflexes: pseudorandom rotation tests. J Vestib Res 1: 61–71, 1990-1991. [PubMed] [Google Scholar]

240. Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R, Ferrari SL. Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res 27: 1252–1262, 2012. doi: 10.1002/jbmr.1594. [PubMed] [CrossRef] [Google Scholar]

241. Pierroz DD, Bouxsein ML, Rizzoli R, Ferrari SL. Combined treatment with a beta-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone 39: 260–267, 2006. doi: 10.1016/j.bone.2006.01.145. [PubMed] [CrossRef] [Google Scholar]

242. Poulton A, Briody J, McCorquodale T, Melzer E, Herrmann M, Baur LA, Duque G. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? - A prospective longitudinal study. Int J Pediatr Endocrinol 2012: 30, 2012. doi: 10.1186/1687-9856-2012-30. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Poulton AS, Bui Q, Melzer E, Evans R. Stimulant medication effects on growth and bone age in children with attention-deficit/hyperactivity disorder: a prospective cohort study. Int Clin Psychopharmacol 31: 93–99, 2016. doi: 10.1097/YIC.0000000000000109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Powe DG, Voss MJ, Zänker KS, Habashy HO, Green AR, Ellis IO, Entschladen F. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1: 628–638, 2010. doi: 10.18632/oncotarget.101009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

245. Pratt LA, Brody DJ. Depression in the U.S. household population, 2009-2012. NCHS Data Brief 172: 1–8, 2014. [PubMed] [Google Scholar]

246. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92: 1651–1697, 2012. doi: 10.1152/physrev.00048.2011. [PubMed] [CrossRef] [Google Scholar]

247. Ransjö M, Lie A, Mukohyama H, Lundberg P, Lerner UH. Microisolated mouse osteoclasts express VIP-1 and PACAP receptors. Biochem Biophys Res Commun 274: 400–404, 2000. doi: 10.1006/bbrc.2000.3151. [PubMed] [CrossRef] [Google Scholar]

248. Reid IR. Effects of beta-blockers on fracture risk. J Musculoskelet Neuronal Interact 8: 105–110, 2008. [PubMed] [Google Scholar]

249. Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC. beta-Blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 20: 613–618, 2005. doi: 10.1359/JBMR.041202. [PubMed] [CrossRef] [Google Scholar]

250. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, Davidson JS, Grey AB. Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 90: 5212–5216, 2005. doi: 10.1210/jc.2005-0573. [PubMed] [CrossRef] [Google Scholar]

251. Reitstetter R, Lukas RJ, Gruener R. Dependence of nicotinic acetylcholine receptor recovery from desensitization on the duration of agonist exposure. J Pharmacol Exp Ther 289: 656–660, 1999. [PubMed] [Google Scholar]

252. Rejnmark L, Vestergaard P, Kassem M, Christoffersen BR, Kolthoff N, Brixen K, Mosekilde L. Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 75: 365–372, 2004. doi: 10.1007/s00223-004-0222-x. [PubMed] [CrossRef] [Google Scholar]

253. Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanus L, Breuer A, Mechoulam R. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem 40: 3228–3233, 1997. doi: 10.1021/jm970126f. [PubMed] [CrossRef] [Google Scholar]

254. Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 diabetes. Diabetes Care 22: 827–831, 1999. doi: 10.2337/diacare.22.5.827. [PubMed] [CrossRef] [Google Scholar]

255. Rizzoli R, Cooper C, Reginster JY, Abrahamsen B, Adachi JD, Brandi ML, Bruyère O, Compston J, Ducy P, Ferrari S, Harvey NC, Kanis JA, Karsenty G, Laslop A, Rabenda V, Vestergaard P. Antidepressant medications and osteoporosis. Bone 51: 606–613, 2012. doi: 10.1016/j.bone.2012.05.018. [PubMed] [CrossRef] [Google Scholar]

256. Robertson D. The epidemic of orthostatic tachycardia and orthostatic intolerance. Am J Med Sci 317: 75–77, 1999. doi: 10.1016/S0002-9629(15)40480-X. [PubMed] [CrossRef] [Google Scholar]

257. Robertson D, Haile V, Perry SE, Robertson RM, Phillips JA III, Biaggioni I. Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension 18: 1–8, 1991. doi: 10.1161/01.HYP.18.1.1. [PubMed] [CrossRef] [Google Scholar]

258. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283: 5866–5875, 2008. doi: 10.1074/jbc.M705092200. [PubMed] [CrossRef] [Google Scholar]

259. Ross K. Mapping pathways from stress to cancer progression. J Natl Cancer Inst 100: 914–917, 2008. doi: 10.1093/jnci/djn229. [PubMed] [CrossRef] [Google Scholar]

260. Rossi F, Siniscalco D, Luongo L, De Petrocellis L, Bellini G, Petrosino S, Torella M, Santoro C, Nobili B, Perrotta S, Di Marzo V, Maione S. The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44: 476–484, 2009. doi: 10.1016/j.bone.2008.10.056. [PubMed] [CrossRef] [Google Scholar]

261. Rothem DE, Rothem L, Soudry M, Dahan A, Eliakim R. Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. J Bone Miner Metab 27: 555–561, 2009. doi: 10.1007/s00774-009-0075-5. [PubMed] [CrossRef] [Google Scholar]

262. Sabsovich I, Guo TZ, Wei T, Zhao R, Li X, Clark DJ, Geis C, Sommer C, Kingery WS. TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 137: 507–519, 2008. doi: 10.1016/j.pain.2007.10.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

263. Sanya EO, Tutaj M, Brown CM, Goel N, Neundörfer B, Hilz MJ. Abnormal heart rate and blood pressure responses to baroreflex stimulation in multiple sclerosis patients. Clin Auton Res 15: 213–218, 2005. doi: 10.1007/s10286-005-0274-7. [PubMed] [CrossRef] [Google Scholar]

264. Sato J, Perl ER. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 251: 1608–1610, 1991. doi: 10.1126/science.2011742. [PubMed] [CrossRef] [Google Scholar]

265. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, Sakata Y, Tomaru Y, Iwata T, Usui M, Aiko K, Yoda T. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett 584: 817–824, 2010. doi: 10.1016/j.febslet.2010.01.001. [PubMed] [CrossRef] [Google Scholar]

266. Sato T, Abe T, Nakamoto N, Tomaru Y, Koshikiya N, Nojima J, Kokabu S, Sakata Y, Kobayashi A, Yoda T. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line. Biochem Biophys Res Commun 377: 126–130, 2008. doi: 10.1016/j.bbrc.2008.09.114. [PubMed] [CrossRef] [Google Scholar]

267. Sato T, Miyazawa K, Suzuki Y, Mizutani Y, Uchibori S, Asaoka R, Arai M, Togari A, Goto S. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement. J Dent Res 93: 807–812, 2014. doi: 10.1177/0022034514536730. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Sato Y, Kanoko T, Satoh K, Iwamoto J. Risk factors for hip fracture among elderly patients with Alzheimer’s disease. J Neurol Sci 223: 107–112, 2004. doi: 10.1016/j.jns.2004.03.033. [PubMed] [CrossRef] [Google Scholar]

269. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int 94: 5–24, 2014. doi: 10.1007/s00223-013-9790-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

270. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221: 555–563, 2011. doi: 10.1016/j.bbr.2010.11.058. [PubMed] [CrossRef] [Google Scholar]

271. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA 292: 1326–1332, 2004. doi: 10.1001/jama.292.11.1326. [PubMed] [CrossRef] [Google Scholar]

272. Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk HD, Lienau J, Duda GN. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347: 567–573, 2012. doi: 10.1007/s00441-011-1205-7. [PubMed] [CrossRef] [Google Scholar]

273. Schreihofer AM, Stornetta RL, Guyenet PG. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J Physiol 529: 221–236, 2000. doi: 10.1111/j.1469-7793.2000.00221.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

274. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR; Study of Osteoporotic Features Research Group . Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86: 32–38, 2001. doi: 10.1210/jcem.86.1.7139. [PubMed] [CrossRef] [Google Scholar]

275. Schweiger JU, Schweiger U, Hüppe M, Kahl KG, Greggersen W, Fassbinder E. Bone density and depressive disorder: a meta-analysis. Brain Behav 6: e00489, 2016. doi: 10.1002/brb3.489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

276. Schweiger U, Deuschle M, Körner A, Lammers CH, Schmider J, Gotthardt U, Holsboer F, Heuser I. Low lumbar bone mineral density in patients with major depression. Am J Psychiatry 151: 1691–1693, 1994. doi: 10.1176/ajp.151.11.1691. [PubMed] [CrossRef] [Google Scholar]

277. Scutt A, Williamson EM. Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif Tissue Int 80: 50–59, 2007. doi: 10.1007/s00223-006-0171-7. [PubMed] [CrossRef] [Google Scholar]

278. Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25: 623–629, 1999. doi: 10.1016/S8756-3282(99)00215-X. [PubMed] [CrossRef] [Google Scholar]

279. Shao P, Ohtsuka-Isoya M, Shinoda H. Circadian rhythms in serum bone markers and their relation to the effect of etidronate in rats. Chronobiol Int 20: 325–336, 2003. doi: 10.1081/CBI-120019343. [PubMed] [CrossRef] [Google Scholar]

280. Sheu YH, Lanteigne A, Stürmer T, Pate V, Azrael D, Miller M. SSRI use and risk of fractures among perimenopausal women without mental disorders. Inj Prev 21: 397–403, 2015. doi: 10.1136/injuryprev-2014-041483. [PubMed] [CrossRef] [Google Scholar]

281. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11: 231–238, 2010. doi: 10.1016/j.cmet.2010.01.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

282. Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG Jr, Karsenty G. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci USA 105: 20529–20533, 2008. doi: 10.1073/pnas.0808701106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Sims NA, Martin TJ. Coupling Signals between the Osteoclast and Osteoblast: How Are Messages Transmitted between These Temporary Visitors to the Bone Surface? Front Endocrinol (Lausanne) 6: 41, 2015. doi: 10.3389/fendo.2015.00041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

284. Sipe LM, Yang C, Ephrem J, Garren E, Hirsh J, Deppmann CD. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr Diabetes 7: e260, 2017. doi: 10.1038/nutd.2017.13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

285. Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 29: 1639–1645, 2014. doi: 10.1002/jbmr.2185. [PubMed] [CrossRef] [Google Scholar]

286. Smitham P, Crossfield L, Hughes G, Goodship A, Blunn G, Chenu C. Low dose of propranolol does not affect rat osteotomy healing and callus strength. J Orthop Res 32: 887–893, 2014. doi: 10.1002/jor.22619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

287. Song HJ, Lee J, Kim YJ, Jung SY, Kim HJ, Choi NK, Park BJ. β1 selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 51: 1008–1015, 2012. doi: 10.1016/j.bone.2012.08.126. [PubMed] [CrossRef] [Google Scholar]

288. Sousa DM, Baldock PA, Enriquez RF, Zhang L, Sainsbury A, Lamghari M, Herzog H. Neuropeptide Y Y1 receptor antagonism increases bone mass in mice. Bone 51: 8–16, 2012. doi: 10.1016/j.bone.2012.03.020. [PubMed] [CrossRef] [Google Scholar]

289. Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry 54: 269–282, 2003. doi: 10.1016/S0006-3223(03)00566-3. [PubMed] [CrossRef] [Google Scholar]

290. St-Pierre S, Jiang W, Roy P, Champigny C, LeBlanc É, Morley BJ, Hao J, Simard AR. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival. PLoS One 11: e0150230, 2016. doi: 10.1371/journal.pone.0150230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

291. Stanton-Hicks M, Jänig W, Hassenbusch S, Haddox JD, Boas R, Wilson P. Reflex sympathetic dystrophy: changing concepts and taxonomy. Pain 63: 127–133, 1995. doi: 10.1016/0304-3959(95)00110-E. [PubMed] [CrossRef] [Google Scholar]

292. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92: 73–78, 2000. doi: 10.1016/S0167-0115(00)00152-X. [PubMed] [CrossRef] [Google Scholar]

293. Sternberg Z, Leung C, Sternberg D, Li F, Karmon Y, Chadha K, Levy E. The prevalence of the classical and non-classical cardiovascular risk factors in multiple sclerosis patients. CNS Neurol Disord Drug Targets 12: 104–111, 2013. doi: 10.2174/1871527311312010016. [PubMed] [CrossRef] [Google Scholar]

294. Straube S, Derry S, Moore RA, McQuay HJ. Cervico-thoracic or lumbar sympathectomy for neuropathic pain and complex regional pain syndrome. Cochrane Database Syst Rev (7): CD002918, 2010. doi: 10.1002/14651858.CD002918.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

295. Sturm D, Gurevitz SL, Turner A. Multiple sclerosis: a review of the disease and treatment options. Consult Pharm 29: 469–479, 2014. doi: 10.4140/TCP.n.2014.469. [PubMed] [CrossRef] [Google Scholar]

296. Swift JM, Hogan HA, Bloomfield SA. β-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation. Med Sci Sports Exerc 45: 1665–1673, 2013. doi: 10.1249/MSS.0b013e31828d39bc. [PubMed] [CrossRef] [Google Scholar]

297. Swift JM, Swift SN, Allen MR, Bloomfield SA. Beta-1 adrenergic agonist treatment mitigates negative changes in cancellous bone microarchitecture and inhibits osteocyte apoptosis during disuse. PLoS One 9: e106904, 2014. doi: 10.1371/journal.pone.0106904. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

298. Szabo B, Nordheim U, Niederhoffer N. Effects of cannabinoids on sympathetic and parasympathetic neuroeffector transmission in the rabbit heart. J Pharmacol Exp Ther 297: 819–826, 2001. [PubMed] [Google Scholar]

299. Tabarowski Z, Gibson-Berry K, Felten SY. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem 98: 453–457, 1996. doi: 10.1016/S0065-1281(96)80013-4. [PubMed] [CrossRef] [Google Scholar]

300. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62: 1832–1837, 2002. [PubMed] [Google Scholar]

301. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305–317, 2002. doi: 10.1016/S0092-8674(02)01049-8. [PubMed] [CrossRef] [Google Scholar]

302. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K, Mizui M, Yamamoto M, Prasad DV, Suzuki K, Ishii M, Terai K, Moriya M, Nakatsuji Y, Sakoda S, Sato S, Akira S, Takeda K, Inui M, Takai T, Ikawa M, Okabe M, Kumanogoh A, Kikutani H. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8: 615–622, 2006. doi: 10.1038/ncb1416. [PubMed] [CrossRef] [Google Scholar]

303. Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Müller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I. Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70: 786–792, 2006. doi: 10.1124/mol.106.026435. [PubMed] [CrossRef] [Google Scholar]

304. Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A, Regev E, Casap N, Shteyer A, Ledent C, Karsak M, Zimmer A, Mechoulam R, Yirmiya R, Shohami E, Bab I. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22: 285–294, 2008. doi: 10.1096/fj.06-7957com. [PubMed] [CrossRef] [Google Scholar]

305. Tamimi I, Ojea T, Sanchez-Siles JM, Rojas F, Martin I, Gormaz I, Perez A, Dawid-Milner MS, Mendez L, Tamimi F. Acetylcholinesterase inhibitors and the risk of hip fracture in Alzheimer’s disease patients: a case-control study. J Bone Miner Res 27: 1518–1527, 2012. doi: 10.1002/jbmr.1616. [PubMed] [CrossRef] [Google Scholar]

306. Tanaka H, Tanabe N, Kawato T, Nakai K, Kariya T, Matsumoto S, Zhao N, Motohashi M, Maeno M. Nicotine affects bone resorption and suppresses the expression of cathepsin K, MMP-9 and vacuolar-type H(+)-ATPase d2 and actin organization in osteoclasts. PLoS One 8: e59402, 2013. doi: 10.1371/journal.pone.0059402. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

307. Tanaka K, Hirai T, Kodama D, Kondo H, Hamamura K, Togari A. α1B-Adrenoceptor signalling regulates bone formation through the up-regulation of CCAAT/enhancer-binding protein δ expression in osteoblasts. Br J Pharmacol 173: 1058–1069, 2016. doi: 10.1111/bph.13418. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

308. Tanaka K, Nishimura N, Sato M, Kanikowska D, Shimizu Y, Inukai Y, Abe C, Iwata C, Morita H, Iwase S, Sugenoya J. Arterial pressure oscillation and muscle sympathetic nerve activity after 20 days of head-down bed rest. Auton Neurosci 177: 266–270, 2013. doi: 10.1016/j.autneu.2013.02.025. [PubMed] [CrossRef] [Google Scholar]

309. Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet 387: 1240–1250, 2016. doi: 10.1016/S0140-6736(15)00238-X. [PubMed] [CrossRef] [Google Scholar]

310. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140: 1630–1638, 1999. doi: 10.1210/endo.140.4.6637. [PubMed] [CrossRef] [Google Scholar]

311. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med 319: 1701–1707, 1988. doi: 10.1056/NEJM198812293192604. [PubMed] [CrossRef] [Google Scholar]

312. Togari A, Arai M, Mizutani S, Mizutani S, Koshihara Y, Nagatsu T. Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett 233: 125–128, 1997. doi: 10.1016/S0304-3940(97)00649-6. [PubMed] [CrossRef] [Google Scholar]

313. Toledo MA, Junqueira LF Jr. Cardiac autonomic modulation and cognitive status in Alzheimer’s disease. Clin Auton Res 20: 11–17, 2010. doi: 10.1007/s10286-009-0035-0. [PubMed] [CrossRef] [Google Scholar]

314. Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci USA 114: E3632–E3641, 2017. doi: 10.1073/pnas.1701054114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

315. Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, Venkatesan A, Clemens TL. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Reports 16: 2723–2735, 2016. doi: 10.1016/j.celrep.2016.08.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

316. Toscano E, della Casa R, Mardy S, Gaetaniello L, Sadile F, Indo Y, Pignata C, Andria G. Multisystem involvement in congenital insensitivity to pain with anhidrosis (CIPA), a nerve growth factor receptor(Trk A)-related disorder. Neuropediatrics 31: 39–41, 2000. doi: 10.1055/s-2000-15296. [PubMed] [CrossRef] [Google Scholar]

317. Tosun A, Doğru MT, Aydn G, Keleş I, Arslan A, Güneri M, Orkun S, Ebinç H. Does autonomic dysfunction exist in postmenopausal osteoporosis? Am J Phys Med Rehabil 90: 1012–1019, 2011. doi: 10.1097/PHM.0b013e31822dea1a. [PubMed] [CrossRef] [Google Scholar]

318. Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP. β-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int 25: 121–129, 2014. doi: 10.1007/s00198-013-2498-z. [PubMed] [CrossRef] [Google Scholar]

319. Tsuda K, Nishio I, Masuyama Y. Bone mineral density in women with essential hypertension. Am J Hypertens 14: 704–707, 2001. doi: 10.1016/S0895-7061(01)01303-6. [PubMed] [CrossRef] [Google Scholar]

320. Vahdaninia M, Omidvari S, Montazeri A. What do predict anxiety and depression in breast cancer patients? A follow-up study. Soc Psychiatry Psychiatr Epidemiol 45: 355–361, 2010. doi: 10.1007/s00127-009-0068-7. [PubMed] [CrossRef] [Google Scholar]

321. Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150: 736–744, 2013. doi: 10.1016/j.jad.2013.06.004. [PubMed] [CrossRef] [Google Scholar]

322. Varenna M, Adami S, Rossini M, Gatti D, Idolazzi L, Zucchi F, Malavolta N, Sinigaglia L. Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study. Rheumatology (Oxford) 52: 534–542, 2013. doi: 10.1093/rheumatology/kes312. [PubMed] [CrossRef] [Google Scholar]

323. Varenna M, Zucchi F, Ghiringhelli D, Binelli L, Bevilacqua M, Bettica P, Sinigaglia L. Intravenous clodronate in the treatment of reflex sympathetic dystrophy syndrome. A randomized, double blind, placebo controlled study. J Rheumatol 27: 1477–1483, 2000. [PubMed] [Google Scholar]

324. Veldhuis-Vlug AG, El Mahdiui M, Endert E, Heijboer AC, Fliers E, Bisschop PH. Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab 97: E2093–E2097, 2012. doi: 10.1210/jc.2012-2823. [PubMed] [CrossRef] [Google Scholar]

325. Veldhuis-Vlug AG, Oei L, Souverein PC, Tanck MW, Rivadeneira F, Zillikens MC, Kamphuisen PW, Maitland-van der Zee AH, de Groot MC, Hofman A, Uitterlinden AG, Fliers E, de Boer A, Bisschop PH. Association of polymorphisms in the beta-2 adrenergic receptor gene with fracture risk and bone mineral density. Osteoporos Int 26: 2019–2027, 2015. doi: 10.1007/s00198-015-3087-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

326. Veldhuis-Vlug AG, Tanck MW, Limonard EJ, Endert E, Heijboer AC, Lips P, Fliers E, Bisschop PH. The effects of beta-2 adrenergic agonist and antagonist on human bone metabolism: a randomized controlled trial. Bone 71: 196–200, 2015. doi: 10.1016/j.bone.2014.10.024. [PubMed] [CrossRef] [Google Scholar]

327. Vignaux G, Besnard S, Ndong J, Philoxène B, Denise P, Elefteriou F. Bone remodeling is regulated by inner ear vestibular signals. J Bone Miner Res 28: 2136–2144, 2013. doi: 10.1002/jbmr.1940. [PubMed] [CrossRef] [Google Scholar]

328. Vignaux G, Ndong JD, Perrien DS, Elefteriou F. Inner Ear Vestibular Signals Regulate Bone Remodeling via the Sympathetic Nervous System. J Bone Miner Res 30: 1103–1111, 2015. doi: 10.1002/jbmr.2426. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

329. Visser H. Gait and balance in senile dementia of Alzheimer’s type. Age Ageing 12: 296–301, 1983. doi: 10.1093/ageing/12.4.296. [PubMed] [CrossRef] [Google Scholar]

330. Walker LM, Preston MR, Magnay JL, Thomas PB, El Haj AJ. Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 28: 603–608, 2001. doi: 10.1016/S8756-3282(01)00427-6. [PubMed] [CrossRef] [Google Scholar]

331. Wang L, Guo TZ, Wei T, Li WW, Shi X, Clark JD, Kingery WS. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome. Anesth Analg 123: 1033–1045, 2016. doi: 10.1213/ANE.0000000000001518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

332. Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci 1116: 360–375, 2007. doi: 10.1196/annals.1402.068. [PubMed] [CrossRef] [Google Scholar]

333. Welgampola MS, Colebatch JG. Vestibulocollic reflexes: normal values and the effect of age. Clin Neurophysiol 112: 1971–1979, 2001. doi: 10.1016/S1388-2457(01)00645-9. [PubMed] [CrossRef] [Google Scholar]

334. Weller I, Schatzker J. Hip fractures and Alzheimer’s disease in elderly institutionalized Canadians. Ann Epidemiol 14: 319–324, 2004. doi: 10.1016/j.annepidem.2003.08.005. [PubMed] [CrossRef] [Google Scholar]

335. Wiens M, Etminan M, Gill SS, Takkouche B. Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med 260: 350–362, 2006. doi: 10.1111/j.1365-2796.2006.01695.x. [PubMed] [CrossRef] [Google Scholar]

336. Wu Q, Liu J, Gallegos-Orozco JF, Hentz JG. Depression, fracture risk, and bone loss: a meta-analysis of cohort studies. Osteoporos Int 21: 1627–1635, 2010. doi: 10.1007/s00198-010-1181-x. [PubMed] [CrossRef] [Google Scholar]

337. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med 17: 1235–1241, 2011. doi: 10.1038/nm.2448. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

338. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138: 976–989, 2009. doi: 10.1016/j.cell.2009.06.051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

339. Yamada T, Ezura Y, Hayata T, Moriya S, Shirakawa J, Notomi T, Arayal S, Kawasaki M, Izu Y, Harada K, Noda M. β2 adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. J Cell Biochem 116: 1144–1152, 2015. doi: 10.1002/jcb.25071. [PubMed] [CrossRef] [Google Scholar]

340. Yang AC, Tsai SJ, Yang CH, Kuo CH, Chen TJ, Hong CJ. Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J Affect Disord 131: 179–185, 2011. doi: 10.1016/j.jad.2010.11.030. [PubMed] [CrossRef] [Google Scholar]

341. Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 48: 451–455, 2011. doi: 10.1016/j.bone.2010.10.170. [PubMed] [CrossRef] [Google Scholar]

342. Yang S, Nguyen ND, Eisman JA, Nguyen TV. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 51: 969–974, 2012. doi: 10.1016/j.bone.2012.07.013. [PubMed] [CrossRef] [Google Scholar]

343. Yates BJ, Siniaia MS, Miller AD. Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol Regul Integr Comp Physiol 268: R1381–R1385, 1995. [PubMed] [Google Scholar]

344. Yazici KM, Akinci A, Sütçü A, Ozçakar L. Bone mineral density in premenopausal women with major depressive disorder. Psychiatry Res 117: 271–275, 2003. doi: 10.1016/S0165-1781(03)00017-9. [PubMed] [CrossRef] [Google Scholar]

345. Yirmiya R, Bab I. Major depression is a risk factor for low bone mineral density: a meta-analysis. Biol Psychiatry 66: 423–432, 2009. doi: 10.1016/j.biopsych.2009.03.016. [PubMed] [CrossRef] [Google Scholar]

346. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, Trembovler V, Csernus V, Shohami E, Bab I. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci USA 103: 16876–16881, 2006. doi: 10.1073/pnas.0604234103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

347. Young JJ, Bruno D, Pomara N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord 169: 15–20, 2014. doi: 10.1016/j.jad.2014.07.032. [PubMed] [CrossRef] [Google Scholar]

348. Yuhara S, Kasagi S, Inoue A, Otsuka E, Hirose S, Hagiwara H. Effects of nicotine on cultured cells suggest that it can influence the formation and resorption of bone. Eur J Pharmacol 383: 387–393, 1999. doi: 10.1016/S0014-2999(99)00551-8. [PubMed] [CrossRef] [Google Scholar]

349. Zaidi M, Fuller K, Bevis PJ, GainesDas RE, Chambers TJ, MacIntyre I. Calcitonin gene-related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif Tissue Int 40: 149–154, 1987. doi: 10.1007/BF02555699. [PubMed] [CrossRef] [Google Scholar]

350. Zhou Z, Zhu G, Hariri AR, Enoch MA, Scott D, Sinha R, Virkkunen M, Mash DC, Lipsky RH, Hu XZ, Hodgkinson CA, Xu K, Buzas B, Yuan Q, Shen PH, Ferrell RE, Manuck SB, Brown SM, Hauger RL, Stohler CS, Zubieta JK, Goldman D. Genetic variation in human NPY expression affects stress response and emotion. Nature 452: 997–1001, 2008. doi: 10.1038/nature06858. [PMC free article] [PubMed] [CrossRef] [Google Scholar]