University of illinois urbana champaign phone number

Below is a list of units within the Office of the Registrar that provide a variety of services to Illinois students, faculty and staff, and alumni.

Office of the Registrar

Sr. Associate Registrar: Donna Butler

Registration Services (demographic changes, residency status, registration assistance, tuition and fee assessment)
Phone: 217-333-6565
Fax: 217-333-3100
Email: [email protected]

Transcripts & Verifications (transcripts, enrollment and degree verifications, loan deferments, FERPA release)
Phone: 217-333-9778
Fax: 217-333-3100
Email: [email protected]

Catalog Management & Section Scheduling
Class Scheduling–for departments (students should refer to registration services above)
Phone: 217-244-4058
Email: [email protected]

Academic Catalog/Courses of Instruction/Programs of Study
Phone: 217-265-9838
Email: [email protected]

Final Exam Scheduling—for departments (students should refer to registration services above)
Phone: 217-244-4058
Email: [email protected]

Academic Records & Graduation

Assistant Registrar: Ellen Marr

Academic Records (academic standing, Dean’s List, grade processing, grade replacement, proficiency credit)
Phone: 217-333-9774
Email: [email protected]

Graduation & Diplomas
Phone: 217-333-6383
Email: [email protected]

Study Abroad Records

Contact: Stewart Schrof

Phone: 217-300-4976
Email: [email protected]

Student Systems

Associate Registrar: Rod Hoewing

Degree Audit Systems
Contact: Chad Cross
Phone: 217-244-6811
Email: [email protected]

Registrar

Meghan Hazen

901 West Illinois Street, Suite 140
Urbana, IL 61801
Phone: 217-333-2034
Fax: 217-333-3100
Email: [email protected]
Office hours: Monday through Friday, 8:30 am – Noon and 1 – 5 pm

With Illinois, our students make their dreams possible, rise to any occasion and shape the world. Join us. Here, learn more about Illinois, review our admission requirements, mark important deadlines, plan a visit or fill out an application.

Hours: 8:30 a.m.–5:00 p.m. CST, Monday–Friday (The Admissions and Records Building is closed for the holidays beginning on December 16, 2022 at 5:00 p.m. It will reopen on January 9, 2023 at 8:30 a.m.)

For queries not related to the campus website (e.g., admissions requests, course information, employment information, computer support, or corrections to sites for other campus units) you will get a speedier response if you refer to the contact information listed above. Thank you.

Scientists from the University of Illinois Urbana-Champaign, University of California, Santa Barbara, and Dow have developed a breakthrough process to transform the most widely produced plastic — polyethylene (PE) — into the second-most widely produced plastic, polypropylene (PP), which could reduce greenhouse gas emissions (GHG). 

“The world needs more and better options for extracting the energy and molecular value from its waste plastics,” said co-lead author Susannah Scott, Distinguished Professor and Mellichamp Chair of Sustainable Catalytic Processing at UC Santa Barbara. Conventional plastic recycling methods result in low-value plastic molecules and, thus, offer little incentive to recycle the mountains of plastic waste that have accumulated over the past several decades. But, Scott added, “turning polyethylene into propylene, which can then be used to make a new polymer, is how we start to build a circular economy for plastics.”

“We started by conceptualizing this approach and demonstrated its promise first through theoretical modeling — now we have proved that it can be done experimentally in a way that is scalable and potentially applicable to current industry demands,” said co-lead author Damien Guironnet, a professor of chemical and biomolecular engineering at Illinois, who published the first study outlining the necessary catalytic reactions in 2020 with Illinois professor Baron Peters. 

The new study published in the Journal of the American Chemical Society announces a series of coupled catalytic reactions that transform PE, which is #2 and #4 plastic that make up 29% of the world’s plastic consumption, into the building block propylene that is the key ingredient to produce PP,  also known as #5 plastic that accounts for close to 25% of the world’s plastic consumption. 

This study establishes a proof-of-concept for upcycling PE plastic with more than 95% selectivity into propylene. The researchers have built a reactor that creates a continuous flow of propylene that can be converted into PP easily using current technology — making this discovery scalable and rapidly implementable. 

“Our preliminary analysis suggests that if just 20% of the world’s PE could be recovered and converted via this route, it could represent a potential savings of GHG emissions comparable to taking 3 million cars off the road," said Garrett Strong, a graduate student associated with the project.

Chemical and biomolecular engineering professor Damien Guironnet and graduate students Vanessa DaSilva and Nicholas Wang demonstrated a new scalable process that can upcycle plastics. Credit: Heather Coit/University of Illinois

The goal is to cut each very long PE molecule many times to obtain many small pieces, which are the propylene molecules. First, a catalyst removes hydrogen from the PE, creating a reactive location on the chain. Next, the chain is split in two at this location using a second catalyst, which caps the ends using ethylene. Finally, a third catalyst moves the reactive site along the PE chain so the process can be repeated. Eventually, all that is left are a large number of propylene molecules. 

“Think of cutting a baguette in half, and then cutting precisely-sized pieces off the end of each half — where the speed at which you cut controls the size of each slice,” Guironnet said. 

“Now that we have established the proof of concept, we can start to improve the efficiency of the process by designing catalysts that are faster and more productive, making it possible to scale up,” Scott said. “Since our end-product is already compatible with current industry separation processes, better catalysts will make it possible to implement this breakthrough rapidly.” 

The work presented in this publication is highly complementary to a paper published in Science last week. Both groups used virgin plastics and similar chemistries. However, the Science team used a different process in an enclosed batch reactor, requiring much higher pressure — which is energy intensive — and the need to recycle more ethylene.

“If we are to upcycle a significant fraction of the over 100 million tons of plastic waste we generate each year, we need solutions that are highly scalable,” Guironnet said. “Our team demonstrated the chemistry in a flow reactor we developed to produce propylene highly selectively and continuously. This is a key advance to address the immense volume of the problem that we are facing.” 

Dow researchers were also involved in this work. “Dow is taking a leading role in driving a more circular economy by designing for circularity, building new business models for circular materials, and partnering to end plastic waste," said Dow senior scientist and co-author Ivan Konstantinov. "As a funder of this project, we are committed to finding new ways to eliminate plastic waste and are encouraged by this approach."

How do I contact University of Illinois Urbana

Contact us..
Telephone: 217-333-0302 (8:30 a.m.–4 p.m. CST, Monday–Friday).
Fax: 217-244-4614..
Text: 217-600-2234 (2–4 p.m. CST, Monday–Friday).

What is the phone number for the University of Illinois?

Name
Phone
Campus Mail Distribution
(217) 265-6863
Campus Recreation, Department of
(217) 333-3806
Campus Research IT
(217)
Campus Visits
(217) 333-0824
Departments/Units | University of Illinois - Search the Directorydirectory.illinois.edu › departmentsUnitsnull

Is UIUC a top 10 school?

U.S. News & World Report Rankings The 2022-23 U.S. News & World Report's America's Best Colleges rankings rated Illinois as the number 13 public university and the number 41 national university.

Is Urbana

The acceptance rate at University of Illinois at Urbana-Champaign is 62.2%. For every 100 applicants, 62 are admitted. This means the school is moderately selective. The school expects you to meet their requirements for GPA and SAT/ACT scores, but they're more flexible than other schools.